Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Handb Exp Pharmacol ; 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2287390

ABSTRACT

The approval of mRNA-containing lipid nanoparticles (LNPs) for use in a vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the clinical utility of RNA-loaded nanocapsules has stimulated a rapid acceleration in research in this area. The development of mRNA-containing LNP vaccines has been rapid, not only because of regulatory adjustments, but also to the advances made in nucleic acid delivery as the result of efforts by many basic researchers. RNA functions, not only in the nucleus and cytoplasm, but also in mitochondria, which have their own genomic apparatus. Mitochondrial diseases caused by mutations or defects in the mitochondrial genome, mitochondrial DNA (mtDNA) are intractable and are mainly treated symptomatically, but gene therapy as a fundamental treatment is expected to soon be a reality. To realize this therapy, a drug delivery system (DDS) that delivers nucleic acids including RNA to mitochondria is required, but efforts in this area have been limited compared to research targeting the nucleus and cytoplasm. This contribution provides an overview of mitochondria-targeted gene therapy strategies and discusses studies that have attempted to validate mitochondria-targeted RNA delivery therapies. We also present the results of 'RNA delivery to mitochondria' based on the use of our mitochondria-targeted DDS (MITO-Porter) that was developed in our laboratory.

2.
J Control Release ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2266546

ABSTRACT

The era of nucleic acid nanomedicine has arrived, as evidenced by Patisiran, a small interfering RNA (siRNA) encapsulated lipid nanoparticle (LNP), and mRNA-loaded LNPs used in COVID-19 vaccines. The diversity of nano-designs for delivering nucleic acid molecules tested in Phase II/III clinical trials reflects the potential of these technologies. These breakthroughs in non-viral gene delivery, including the use of LNPs, have attracted substantial interest worldwide for developing more effective drugs. A next step in this field is to target tissues other than the liver, which requires significant research efforts and material development. However, mechanistic studies in this area are lacking. This study compares two types of LNPs with different tissue-selectivity for delivering plasmid DNA (pDNA), one being liver-selective and the other spleen-selective, in an effort to understand the mechanisms responsible for differences in gene expression of delivered genes. We observed little difference in the biodistribution of these two LNPs despite the 100-1000-fold differences in gene expression. We then quantified the amount of delivered pDNA and mRNA expression in each tissue by quantitative real-time PCR (qPCR) to evaluate various intracellular processes, such as nuclear delivery, transcription and translation. The results showed a >100-fold difference in the translation step but there were little differences in amount of pDNA delivered to the nucleus or the amount of mRNA expression for the two LNP deliveries. Our findings suggest that endogenous factors affect gene expression efficiency not the extent of biodistribution.

3.
Applied Materials Today ; 31:101754.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2242988

ABSTRACT

Microfluidic devices are widely used in lipid nanoparticle (LNP)-based vaccines and nanomedicine research. These devices should be stiff enough to withstand the high flow rate for the mass production of LNPs, and malleable enough to use when fabricating complicated microchannel or micromixer structures, such as staggering herringbone micromixers. Due to the limitations of the available fabrication methods, optimal microfluidic devices have not yet been developed. In this study, we report the development of a glass-based microfluidic device based on the invasive Lipid Nanoparticle Production (iLiNP) device® reported previously. The LNP size controllability of glass-based iLiNP device was similar to that of the poly(dimethylsiloxane) (PDMS)-based iLiNP device, and the glass-iLiNP device was used for mRNA-loaded LNP production with ionizable lipids used for COVID-19 mRNA vaccines. We also demonstrate a piling- and numbering-up strategy based on glass-iLiNP device. The iLiNP unit composed of five-layered microchannels was fabricated by piling-up each glass-iLiNP device followed by parallelization (numbering-up) for the mass production of LNPs. This iLiNP system can produce LNPs with sizes ranging between 20 and 60 nm at a flow rate of 20–50 mL/min, and its performance is comparable to that of the commercially available microfluidic system like NanoAssemblr®.

4.
Small Science ; 2022.
Article in English | Web of Science | ID: covidwho-2122149

ABSTRACT

Ionizable lipids with branched tails have been used in lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics like COVID-19 vaccines. However, due to the limited commercial availability of branched ingredients, a systematic analysis of how the branched tails affect LNP quality has been lacking to date. Herein, alpha-branched tail lipids are focused, as they can be synthesized from simple commercially available chemicals, and the length of each chain can be independently controlled. Furthermore, symmetry and total carbon number can be used to describe alpha-branched tails, facilitating the design of a systematic lipid library to elucidate "structure-property-function" relationships. Consequently, a lipid library is developed containing 32 different types of alpha-branched tails. This library is used to demonstrate that branched chains increase LNP microviscosity and headgroup ionization ability in an acidic environment, which in turn enhances the stability and in vivo efficacy of mRNA-LNPs. Of the branched lipids, CL4F 8-6 LNPs carrying Cas9 mRNA and sgRNA could achieve 54% genome editing and 77% protein reduction with a single dose of 2.5 mg kg(-1). This mechanism-based data on branched lipids is expected to provide insights into rational lipid design and effective gene therapy in the future.

5.
Pharmaceutics ; 14(8)2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-2023987

ABSTRACT

Dendritic cells (DCs) are attractive antigen-presenting cells to be targeted for vaccinations. However, the systemic delivery of mRNA to DCs is hampered by technical challenges. We recently reported that it is possible to regulate the size of RNA-loaded lipid nanoparticles (LNPs) to over 200 nm with the addition of salt during their formation when a microfluidic device is used and that larger LNPs delivered RNA more efficiently and in greater numbers to splenic DCs compared to the smaller counterparts. In this study, we report on the in vivo optimization of mRNA-loaded LNPs for use in vaccines. The screening included a wide range of methods for controlling particle size in addition to the selection of an appropriate lipid type and its composition. The results showed a clear correlation between particle size, uptake and gene expression activity in splenic DCs and indicated that a size range from 200 to 500 nm is appropriate for use in targeting splenic DCs. It was also found that it was difficult to predict the transgene expression activity and the potency of mRNA vaccines in splenic DCs using the whole spleen. A-11-LNP, which was found to be the optimal formulation, induced better transgene expression activity and maturation in DCs and induced clear therapeutic antitumor effects in an E.G7-OVA tumor model compared to two clinically relevant LNP formulations.

6.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2023984

ABSTRACT

mRNA delivery has recently gained substantial interest for possible use in vaccines. Recently approved mRNA vaccines are administered intramuscularly where they transfect antigen-presenting cells (APCs) near the site of administration, resulting in an immune response. The spleen contains high numbers of APCs, which are located near B and T lymphocytes. Therefore, transfecting APCs in the spleen would be expected to produce a more efficient immune response, but this is a challenging task due to the different biological barriers. Success requires the development of an efficient system that can transfect different immune cells in the spleen. In this study, we report on the development of mRNA-loaded lipid nanoparticles (LNPs) targeting immune cells in the spleen with the goal of eliciting an efficient immune response against the antigen encoded in the mRNA. The developed system is composed of mRNA loaded in LNPs whose lipid composition was optimized for maximum transfection into spleen cells. Dendritic cells, macrophages and B cells in the spleen were efficiently transfected. The optimized LNPs produced efficient dose-dependent cytotoxic T lymphocyte activities that were significantly higher than that produced after local administration. The optimized LNPs encapsulating tumor-antigen encoding mRNA showed both prophylactic and therapeutic antitumor effects in mice.

7.
Expert Opin Biol Ther ; 22(9): 1209-1219, 2022 09.
Article in English | MEDLINE | ID: covidwho-1839892

ABSTRACT

INTRODUCTION: After the emergence of lipid nanoparticles (LNP) containing therapeutic mRNA as vaccines for use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the clinical usefulness of nucleic acid-encapsulated LNPs is now a fact. In addition to the nucleus and cytoplasm, mitochondria, which have their own genome, are a site where nucleic acids function in the cell. Gene therapies targeting mitochondria are expected to pave the way for the next generation of therapies. AREAS COVERED: Methods for delivering nucleic acids to mitochondria are needed in order to realize such innovative therapies. However, only a few reports on delivery systems targeting mitochondria have appeared. In this review, we summarize the current state of research on RNA-based therapeutics targeted to mitochondria, with emphasis on mitochondrial RNA delivery therapies and on therapies that involve the use of mitochondrial genome editing devices. EXPERT OPINION: We hope that this review article will focus our attention to this area of research, stimulate more interest in this field of research, and lead to the development of mitochondria-targeted nucleic acid medicine. It has the potential to become a major weapon against urgent and unknown diseases, including SARS-CoV-2 infections.


Subject(s)
COVID-19 , RNA , COVID-19/therapy , Humans , Liposomes , Mitochondria/genetics , Nanoparticles , RNA, Messenger , RNA, Mitochondrial/genetics , SARS-CoV-2/genetics
8.
J Control Release ; 343: 361-378, 2022 03.
Article in English | MEDLINE | ID: covidwho-1665152

ABSTRACT

Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.


Subject(s)
COVID-19 Drug Treatment , Virus Diseases , Drug Delivery Systems , Humans , Pandemics/prevention & control , SARS-CoV-2 , Virus Diseases/epidemiology
9.
Adv Drug Deliv Rev ; 181: 114083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588554

ABSTRACT

Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.


Subject(s)
Nanomedicine/methods , Animals , Drug Compounding/methods , Humans , Nanoparticles/chemistry
10.
J Control Release ; 330: 305-316, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-988296

ABSTRACT

The era of Nanomedicine has arrived with the approval of ONPATTRO™ by the FDA in 2018. Lipid nanoparticle (LNP) technology has succeeded in delivering siRNA to the human liver in genetic diseases and has also been applied to mRNA vaccinations for COVID-19 using a similar LNP technology. In this review, we focus on the current status of new lipids for use in LNP formulations including our original lipids (CL4H6/CL4C6/CL4D6) as well as mechanisms of targeting without a ligand. Clinical applications of nano DDS are moving forward rapidly in the field of cancer immunology since the successful introduction of OPDIVO™ in 2014. Antigen presentation and the maturation of immune cells can be controlled by nano DDS for cancer immunotherapy. YSK12-C4, a newly designed ionizable amino lipid can induce successful immune activation by silencing mRNA in DC and NK cells, which are expected to be evaluated for clinical use. Finally, new cancer therapy by targeting mitochondria involving the use of a MITO-Porter, a membrane fusion-type mitochondrial delivery system, has been introduced. The importance of delivering a photo sensitizer to mitochondria was clearly demonstrated in photodynamic cancer therapy. Clinical applications of MITO-Porters started in collaborative efforts with LUCA Science Co., Ltd. And was established in 2018. The future direction of Nanomedicine is discussed.


Subject(s)
COVID-19 Vaccines/chemistry , Drug Delivery Systems , Nanomedicine/trends , Animals , COVID-19 , Drug Compounding , Humans , Immunotherapy , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL